PEG-DSPE block copolymers and their derivatives as nanomaterials in drug deliver

Posted by chemicals on June 17th, 2019

Poly(ethylene glycol)–distearoylphosphatidylethanolamine (DSPE-PEG) block copolymers are biocompatible and amphiphilic polymers that can be widely utilized in the preparation of liposomes, polymericnanoparticles, polymer hybrid nanoparticles, solid lipid nanoparticles, lipid–polymer hybrid nanoparticles, and microemulsions. Particularly, the terminal groups of PEG can be activated and linked to various targeting ligands, which can prolong the circulation time, improve the drug bioavailability, reduce undesirable side effects, and especially target specific cells, tissues, and even the intracellular localization in organelles.

Poly(ethylene glycol)–distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers are amphiphilic, have been approved by the Food and Drug Administration for medical applications, and have been widely used in the preparation of liposomes, polymeric nanoparticles, polymer hybrid nanoparticles, and solid lipid nanoparticles, among others. The amphiphilic polymers are nanostructures composed by a hydrophobic core (DSPE) and a hydrophilic shell (PEG). The core–shell structure can encapsulate and carry poorly water-soluble drugs to congregate in the core of DSPE, and the PEG shell reduces the in vivo clearance of cholesterol-free liposomal formulations and the adsorption of plasma proteins. Therefore, utilizing PEG-DSPE for the formation of nanostructures could prolong the body circulation time and release drugs at a sustained rate in an optimal range of drugconcentrations. Molecular therapy, including gene therapy, is a promising strategy for the treatment of human diseases. However, delivery of molecular therapeutics efficiently and specifically to the targeted tissue remains a significant challenge.

Like it? Share it!


chemicals

About the Author

chemicals
Joined: May 8th, 2019
Articles Posted: 12

More by this author