Nanopore Sequencing 101: Choosing the Right Sequencing Device

Posted by kiko on December 29th, 2023

Oxford Nanopore's technology empowers base modification analysis and nucleotide sequencing within a single read-length fragment, removing the necessity for conducting multiple sequencing experiments. This sets it apart from conventional methods as it obviates the need for intricate library preparation procedures like bisulfite sequencing for methylation. As a result, Oxford Nanopore technology enables comprehensive analysis of epigenetic modifications across the entire genome during a single experiment.

Key Considerations for Choosing a Nanopore Sequencing Device

1. Throughput and Read Length

Throughput and read length are essential parameters to consider when selecting a nanopore sequencing device. Throughput refers to the number of DNA/RNA strands that can be sequenced simultaneously. High-throughput devices are preferable for large-scale genomic projects and population studies, while low-throughput devices might suffice for smaller-scale experiments.

Read length is another critical factor, as it determines the length of DNA or RNA fragments that can be sequenced in a single read. Longer read lengths are advantageous for de novo genome assembly and identifying structural variations, whereas shorter reads are sufficient for targeted sequencing and gene expression analysis.

2. Accuracy and Error Rate

The accuracy of nanopore sequencing has significantly improved over the years, but it still lags behind certain other sequencing technologies. Different devices have varying error rates, and this can impact the applicability of the technology for specific research purposes. High-accuracy devices are essential for clinical applications, where precision is paramount, while research-focused projects might tolerate slightly higher error rates.

3. Sample Preparation and Library Complexity

Consider the complexity and ease of sample preparation required by the sequencing device. Some devices demand more laborious library preparation protocols, making them suitable for experienced researchers. On the other hand, simplified library preparation methods can be advantageous for high-throughput applications or researchers who are new to the technology.

4. Portability and Connectivity

The portability of the nanopore sequencing device can be crucial for field-based research and point-of-care applications. Some devices are compact and battery-powered, allowing for real-time sequencing in remote locations. Additionally, consider the connectivity options of the device, as seamless data transfer and integration with downstream analysis pipelines are vital for efficient research workflows.

5. Cost and Budget

The cost of nanopore sequencing devices can vary significantly, depending on their features and capabilities. While high-end devices may offer cutting-edge performance, they might be financially prohibitive for some researchers or institutions. Evaluating your budget constraints and balancing them with the device's functionalities is essential to make a cost-effective choice.

How to Calculate Data Output for Nanopore Sequencing

Calculating data output for nanopore sequencing based on the number of nanopores is a useful approach to approximate the maximum value of data that each product can achieve. To do this, you need to know the number of nanopores in the sequencing device and the flow rate of bases through each nanopore per second. Here's a step-by-step guide on how to calculate data output using this method:

  • Determine the flow rate of bases through each nanopore per second

The flow rate is the number of bases passing through a single nanopore in one second. As mentioned in the context, the flow rate is about 400 base pairs (bp) per second.

  • Find the number of nanopores in the sequencer

Sequencing devices have varying numbers of nanopores. For this example, let's consider a sequencer with 512 nanopores.

  • Calculate the sequencing volume per second

To calculate the sequencing volume per second, multiply the flow rate (400 bp/s) by the number of nanopores (512):
Sequencing volume per second = 400 bp/s * 512 nanopores = 204,800 bp/s or approximately 200K.

  • Calculate data output for one minute

To calculate the data output for one minute, multiply the sequencing volume per second (200K) by 60 seconds: Data output for one minute = 200,000 bp/min or approximately 12.3M (million bases).

  • Calculate data output for one hour

To calculate the data output for one hour, multiply the data output for one minute (12.3M) by 60 minutes: Data output for one hour = 12.3M bases/hour or approximately 738M (million bases).

  • Calculate data output for 48 hours (maximum theoretical value)

To calculate the data output for 48 hours, multiply the data output for one hour (738M) by 48 hours: Data output for 48 hours = 738M bases * 48 hours = 35.424 billion bases or approximately 35G.

It's important to note that these calculations represent the theoretical maximum data output and may not be achieved in practical scenarios due to various factors, including sample quality, experimental conditions, and instrument limitations. However, using the number of nanopores as a basis for approximation can help you compare and select the right nanopore sequencing device based on your data needs and research requirements.

Like it? Share it!


About the Author

Joined: November 27th, 2018
Articles Posted: 151

More by this author