Overcoming Business Security Challenges With Machine Learning DevelopmentPosted by OodlesAI on February 27th, 2020 In a data-driven market, having analytical and predictive capabilities that effortlessly operate on ginormous data sets is essential to deal with security threats. The volume and frequency of breach attempt through malware, unauthorized entry, and intrusions into organizational data is multifarious. It is a tedious task to discover their existence on a network alone. Machine learning development services, however, expose and deal with security risks at a lightning speed. Machine learning is one of the most effective technologies that unlock new possibilities for developing futuristic web and mobile applications. Being a part of Artificial Intelligence (AI) services, it enables businesses to automate their inbound/outbound processes and deliver personalized customer experiences. Machine learning techniques incorporate several complex algorithms to identify patterns in data and predict future tendencies of a prototype. At Oodles, we train machine learning (ML) algorithms to deploy predictive engines across organizations and media channels to inspect records, log analytics, and geospatial data. Thus, our tools locate anomalies explicitly by recognizing trends and observing patterns in the data. Eliminating Security Threats with ML Solutions1) IoTAn era where machine to machine interactions are greater than human to human or human to machine interaction is well on its way. The Internet of Things uses technologies like RFID for auto-identification in various industries. Protecting supply chain transaction information is vital to all businesses. a) Cyber ReconnaissanceIntruders in cyberspace often engineer tracking, analyzing, and engaging with a targeted system to identify it’s vulnerable nodes. They use this information to access secret information and manipulate it for their gains. b) Brute Force AttackIntruders target your online store’s admin panel in an attempt to figure out your password with automated software. It uses all possible permutations and combinations to get access to the desired network. c) TrackingPlausibly, tangible or intangible factors may jeopardize the UID of an IoT device. 2) E-CommerceCommercial transactions online are just as susceptible to transgressions as any other activity on the internet. a) Disclosure/demolition/mutation of dataDelinquent elements attempt to gain direct access to a company’s database through direct access or backdoor attacks that bypass the normal authentication mechanisms. Since they don’t have physical access to systems, hackers use blackhat techniques like worms and viruses to break into the network. b) Denial of servicesIn a denial-of-service attack (DoS attack), the attacker takes action that prevents permissible users from accessing network resources. They temporarily disrupt the services of a host connected to the internet by flooding the servers with multiple requests until the website crashes. c) Financial FraudTheft of credit card information from payment gateways occurs in real-time when attackers gain access through successful phishing or brute force attack. Some attacks also happen through third-party compromises. Such breaches affect user loyalty and damage the company’s overall reputation. d) RepudiationA repudiation attack occurs when a transaction is denied by the end-user including refusal to acknowledge any communication. It can be handled by employing communication modules that require compulsory acknowledgment. 3) Big DataAs of today, every organization works with extremely large data sets. They are frequently analyzed to reveal patterns, trends, and associations computationally. Therefore, it is essential to protect such a sizable amount of data from being compromised for the smooth functioning of an organization. a) Access to sensitive and personal informationBig Data analytics combines various data sources including machine data and analytics data clustered in such a way that routine security audits are unfeasible. With multiple vulnerable nodes and servers across the system, sensitive information is jeopardized. Multiple factor authentication with bio-metric authentication and encryption tools that work on all types of data can mitigate such risks. It is part of granular access control, used in machine language development systems. b) Compromise of data rights and ownershipDifferent stakeholders may attempt to claim ownership of data they generate, compile, structure, add-to or obtain a license on. No single stakeholder, however, has exclusive rights. At the same time, a data breach is the liability of the data owner in a cloud environment, even if the data holder is at fault. c) Vulnerability to fake data generationOne of the main features of big data is its size. When not secure, fake data inputs into the system become a sizable problem. In turn, analytics processes go to waste. d) Internal Data SecurityBig data administrators often secure points of entry and exit without making internal security as robust. Closing RemarksObserving various threats to corporations’ databases, it can be inferred that ML-driven AI technologies are the foundation of a resilient security system. A dynamic, pro-active security solution must inevitably comprise firewalls, antivirus programs, security plugins, and encryptions supported by ML. Why Choose Oodles AI For Machine Learning Development?At Oodles, our expertise in supervised, unsupervised, semi-supervised, and reinforcement ML algorithms makes provision for the most fitting security solutions in the market. Like it? Share it!More by this author |